A simple and fast method to determine the parameters for fuzzy c-means cluster validation

نویسندگان

  • Veit Schwammle
  • Ole N. Jensen
چکیده

Motivation: Fuzzy c-means clustering is widely used to identify cluster structures in high-dimensional data sets, such as those obtained in DNA microarray and quantitative proteomics experiments. One of its main limitations is the lack of a computationally fast method to determine the two parameters fuzzifier and cluster number. Wrong parameter values may either lead to the inclusion of purely random fluctuations in the results or ignore potentially important data. The optimal solution has parameter values for which the clustering does not yield any results for a purely random data set but which detects cluster formation with maximum resolution on the edge of randomness. Results: Estimation of the optimal parameter values is achieved by evaluation of the results of the clustering procedure applied to randomized data sets. In this case, the optimal value of the fuzzifier follows common rules that depend only on the main properties of the data set. Taking the dimension of the set and the number of objects as input values instead of evaluating the entire data set allows us to propose a functional relationship determining its value directly. This result speaks strongly against setting the fuzzifier equal to 2 as typically done in many previous studies. Validation indices are generally used for the estimation of the optimal number of clusters. A comparison shows that the minimum distance between the centroids provides results that are at least equivalent or better than those obtained by other computationally more expensive indices. Contact: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

ANFIS modeling and validation of a variable speed wind turbine based on actual data

In this research paper, ANFIS modeling and validation of Vestas 660 kW wind turbine based on actual data obtained from Eoun-Ebn-Ali wind farm in Tabriz, Iran, and FAST is performed. The turbine modeling is performed by deriving the non-linear dynamic equations of different subsystems. Then, the model parameters are identified to match the actual response. ANFIS is an artificial intelligent tech...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

Oil Reservoirs Classification Using Fuzzy Clustering (RESEARCH NOTE)

Enhanced Oil Recovery (EOR) is a well-known method to increase oil production from oil reservoirs. Applying EOR to a new reservoir is a costly and time consuming process. Incorporating available knowledge of oil reservoirs in the EOR process eliminates these costs and saves operational time and work. This work presents a universal method to apply EOR to reservoirs based on the available data by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010